How arithmetic generates the logic of quantum experiments

December 22, 2013

How quantum indeterminacy derives from self-reference in arithmetic

Filed under: Uncategorized — steviefaulkner @ 12:09 pm

How Arithmetic Generates the Logic of Quantum Experiments


Full Text HERE



As opposed to the classical logic of true and false, viewed as an axiomatised theory, ordinary arithmetic conveys the three logical values: provable, negatable and logically independent. This research proposes the hypothesis that Axioms of Arithmetic are the fundamental foundation running arithmetical processes in Nature, upon which physical processes rest. And goes on to show, in detail, that under these axioms, quantum mathematics derives and initiates logical independence, agreeing with indeterminacy in quantum experiments. Supporting arguments begin by explaining logical independence in arithmetic, in particular, independence of the square root of minus one. The method traces all sources of information entering arithmetic, needed to write mathematics of the free particle. Wave packets, prior to measurement, are found to be the only part of theory logically independent of axioms; the rest of theory is logically dependent. Ingress of logical independence is via uncaused, unprevented self-reference, sustaining the wave packet, but implying unitarity. Quantum mathematics based on axiomatised arithmetic is established as foundation for the 3-valued logic of Hans Reichenbach, which reconciles quantum theory with experimental anomalies such as the Einstein, Podolsky & Rosen paradox.


Leave a Comment »

No comments yet.

RSS feed for comments on this post. TrackBack URI

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Blog at

%d bloggers like this: